50 research outputs found

    Design and Implementation of a Wireless Charging-Based Cardiac Monitoring System Focused on Temperature Reduction and Robust Power Transfer Efficiency

    Get PDF
    Wireless power transfer systems are increasingly used as a means of charging implantable medical devices. However, the heat or thermal radiation from the wireless power transfer system can be harmful to biological tissue. In this research, we designed and implemented a wireless power transfer system-based implantable medical device with low thermal radiation, achieving 44.5% coil-to-coil efficiency. To suppress thermal radiation from the transmitting coil during charging, we minimized the ESR value of the transmitting coil. To increase power transfer efficiency, a ferrite film was applied on the receiving part. Based on analyses, we fabricated a cardiac monitoring system with dimensions of 17 x 24 x 8 mm(3) and implanted it in a rat. We confirmed that the temperature of the wireless charging device increased by only 2 degrees C during the 70 min charging, which makes it safe enough to use as an implantable medical device charging system.11Ysciescopu

    A Wireless Power Transfer Based Implantable ECG Monitoring Device

    Get PDF
    Implantable medical devices (IMDs) enable patients to monitor their health anytime and receive treatment anywhere. However, due to the limited capacity of a battery, their functionalities are restricted, and the devices may not achieve their intended potential fully. The most promising way to solve this limited capacity problem is wireless power transfer (WPT) technology. In this study, a WPT based implantable electrocardiogram (ECG) monitoring device that continuously records ECG data has been proposed, and its effectiveness is verified through an animal experiment using a rat model. Our proposed device is designed to be of size 24 x 27 x 8 mm, and it is small enough to be implanted in the rat. The device transmits data continuously using a low power Bluetooth Low Energy (BLE) communication technology. To charge the battery wirelessly, transmitting (Tx) and receiving (Rx) antennas were designed and fabricated. The animal experiment results clearly showed that our WPT system enables the device to monitor the ECG of a heart in various conditions continuously, while transmitting all ECG data in real-time.11Ysciescopu

    Analysis and Introduction of Effective Permeability with Additional Air-Gaps on Wireless Power Transfer Coils for Electric Vehicle based on SAE J2954 Recommended Practice

    Get PDF
    The wireless power transfer (WPT) method for electric vehicles (EVs) is becoming more popular, and to ensure the interoperability of WPT systems, the Society of Automotive Engineers (SAE) established the J2954 recommended practice (RP). It includes powering frequency, electrical parameters, specifications, testing procedures, and other contents for EV WPT. Specifically, it describes the ranges of self-inductances of the transmitting coil, the receiving coil, and coupling coefficient (k), as well as the impedance matching values of the WPT system. Following the electrical parameters listed in SAE J2954 RP is crucial to ensure the EV wireless charging system is interoperable. This paper introduces a method for adjusting the effective permeability of the ferrite blocks in the standard model, to tune the self-inductance of the coils as well as the coupling coefficient. To guarantee the given values of the self-inductance of the coil and coupling coefficient matched those in the standard, we slightly modified the air-gap between the ferrite tiles in a specific region. Based on this method, it was possible to successfully tune the self-inductance of the transmitting coil and receiving coil as well as the coupling coefficient. The proposed method was verified by simulation and experimental measurements

    Toroidal-Shaped Coils for a Wireless Power Transfer System for an Unmanned Aerial Vehicle

    Get PDF
    Unmanned aerial vehicles (UAVs) using communications, sensors, and navigation equipment will play a key role in future warfare. Currently, UAVs are monitored to prevent misfire and accidents, and the conventional method adopted uses wires for data transmission and power supply. The repeated connection and disconnection of cables increases maintenance time and harms the connector. For convenience and stability, a wireless power transfer system to power UAVs is needed. Unlike other wireless power transfer (WPT) applications, the size of the receiving coils must be small, so that the WPT systems can be embedded inside space-limited UAVs. The small size reduces the coupling coefficient and transfer efficiency between the transmitting and the receiving coils. In this study, we propose a toroidal-shaped coil for a WPT system for UAVs with high coupling coefficient with minimum space requirements. For validation, conventional coils and the proposed toroidal-shaped coil were used and their coupling coefficient and power transfer efficiency were compared using simulated and measured results. The simulated and measured results were strongly correlated, confirming that the proposed WPT system significantly improved efficiency with negligible change in the space requirement

    A Compact and Multi-Stack Electromagnetic Bandgap Structure for Gigahertz Noise Suppression in Multilayer Printed Circuit Boards

    No full text
    In modern printed electronics, the performances of a circuit and a device are severely deteriorated by the electromagnetic noise in the gigahertz (GHz) frequency range, such as the simultaneous switching noise and ground bounce noise. A compact and multi-stack electromagnetic bandgap (CMS-EBG) structure is proposed to suppress the electromagnetic noise over the GHz frequency range with a short distance between a noise source and a victim on multilayer printed circuit boards (MPCBs). The original configuration of the stepped impedance resonators is presented to efficiently form multiple stacks of EBG cells. The noise suppression characteristics of the CMS-EBG structure are rigorously examined using Floquet-Bloch analysis. In the analysis, dispersion diagrams are extracted from an equivalent circuit model and a full-wave simulation model. It is experimentally verified that the CMS-EBG structure suppresses the resonant modes over the wideband frequency range with a short source-to-victim distance; thus, this structure substantially mitigates GHz electromagnetic noise in compact MPCBs

    Single-Sided Near-Field Wireless Power Transfer by A Three-Dimensional Coil Array

    No full text
    Wirelessly powered medical microrobots are often driven or localized by magnetic resonance imaging coils, whose signal-to-noise ratio is easily affected by the power transmitter coils that supply the microrobot. A controlled single-sided wireless power transmitter can enhance the imaging quality and suppress the radiation leakage. This paper presents a new form of electromagnet which automatically cancels the magnetic field to the back lobes by replacing the traditional circular coils with a three-dimensional (3D) coil scheme inspired by a generalized form of Halbach arrays. It is shown that, along with the miniaturization of the transmitter system, it allows for improved magnetic field intensity in the target side. Measurement of the produced magnetic patterns verifies that the power transfer to the back lobe is 15-fold smaller compared to the corresponding distance on the main lobe side, whilst maintaining a powering efficiency similar to that of conventional planar coils. To show the application of the proposed array, a wireless charging pad with an effective powering area of 144 cm2 is fabricated on 3D-assembled printed circuit boards. This 3D structure obviates the need for traditional magnetic shield materials that place limitations on the working frequency and suffer from non-linearity and hysteresis effects

    Novel Resonance-Based Wireless Power Transfer Using Mixed Coupling

    No full text
    This study presents an equivalent circuit model for the analysis of wireless power transfer (WPT) through both electric and magnetic couplings using merely a resonant coupler. Moreover, the frequency split phenomenon, which occurs when transmitting couplers are near receiving couplers, is explained. This phenomenon was analyzed using simple circuit models derived via a mode decomposition technique. To verify the proposed method, a resonant coupler using mixed coupling was designed and its efficiency was compared with the result obtained using a commercial electromagnetic solver. The results of this study are expected to aid in designing various WPT couplers or sensor antennas by selecting electric, magnetic, or mixed couplings. Furthermore, the results of this study are expected to be applied to technologies that sense objects, or simultaneously transmit and receive information and power wirelessly

    Magnetic Design of a Three-Phase Wireless Power Transfer System for EMF Reduction

    No full text
    Wireless charging of electric vehicles (EV) by means of the wireless power transfer (WPT) is becoming increasingly popular in the recent years. And the electromagnetic field (EMF) should be lowered for the safety of pedestrians. In this paper, a new three-phase WPT structure is proposed. It is compared with the single phase WPT structure to demonstrate the advantages of the proposed structure in the magnetic field distributions and system performance. The simulation results using the 3D finite element analysis (FEA) tool show that it can considerably suppress the leakage magnetic field from the WPT system with the enhanced performance

    Spatial visualization of inductive coupling parameter for optimization of wireless power transfer coils

    No full text
    A method to visualize the spatial distribution of the self- and mutual-inductances and a coupling parameter between inductive couplers is proposed. Identifying the spatial distribution of the coupling parameter could be useful in optimizing wireless-power-transfer coils, especially when placing ferrite materials or shielding structures
    corecore